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(57) ABSTRACT

A computer-implemented method is provided for generating
patient models from multiple imaging contrast sources which
may be, for example from magnetic resonance imaging with-
out computed tomography. The method includes: acquiring
multiple sets of image data representing a volume of a patient
using magnetic resonance imaging, wherein each set of image
data is acquired in a different manner so as to create contrast
amongst tissue types of the patient; classifying tissue in each
voxel in the volume using the multiple sets of image data as
input to a classification algorithm; and generating a patient
model for the volume from probability distributions of the
classes of tissue as derived from the classification algorithm.

18 Claims, 6 Drawing Sheets
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PATIENT MODELING FROM
MULTISPECTRAL INPUT IMAGE VOLUMES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/522,366, filed on Aug. 11, 2011. The
entire disclosure of the above application is incorporated
herein by reference.

FIELD

The present disclosure relates generally to a method for
generating patient models from multiple imaging contrast
source which may be used, for example to support treatment
planning for radiation therapy.

BACKGROUND

Precision radiation therapy (RT) planning relies on patient
models that accurately represent the geometric distribution of
cancerous and normal tissues, and which provide information
to estimate the radiation transport of the treatment beams
through the patient. Computed tomography (CT) scanning
has been the primary means of providing these patient mod-
els, due to its reasonably known geometric accuracy and
relationship between image signals and radiation attenuation.
Significant limitations exist with radiation therapy based on
CT, however, due to its lack of soft tissue contrast for
adequately discriminating tissue types. Magnetic resonance
imaging (MRI) not only provides improved contrast between
tissue types, it also may serve as an important physiological
and molecular biomarker for therapy assessment and adapta-
tion, and may more conveniently assess physiological move-
ment of organs and tumors.

Therefore, it is desirable to develop techniques for gener-
ating patient models from magnetic resonance imaging to
support treatment planning for radiation therapy. This section
provides background information related to the present dis-
closure which is not necessarily prior art.

SUMMARY

A technique is provided for generating patient models for
use in radiation therapy. The method includes: acquiring mul-
tiple sets of image data representing a volume of a patient
using magnetic resonance imaging, wherein each set of image
data is acquired in a different manner so as to create contrast
amongst tissue types of the patient; classifying tissue in each
voxel in the volume using the multiple sets of image data as
input to a classification algorithm; and generating one or
more patient models for the volume from probability distri-
butions of the classes of tissue as derived from the classifica-
tion algorithm.

In one aspect of this disclosure, patient models are gener-
ated using a computer-implemented method. The method
includes: acquiring multiple sets of image data by varying a
pulse sequence and/or acquisition parameters of magnetic
resonance imaging between each set of image data in the
multiple sets of image data, where each set of image data
represents a volume of a patient and is spatially aligned with
each other; classifying tissue in the multiple sets of image
data into different tissue types using a classification algo-
rithm; and assigning properties to voxels comprising the vol-
ume based on a probability distribution of tissue types yielded
by the classification algorithm, thereby generating a patient
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model for the volume. Assigning different properties to vox-
els in the volume generates different types of patient models
which may be used in radiation therapy.

In another aspect of this disclosure, a system is set forth for
generating the patient models used in radiation therapy. The
system is comprised generally of an imager, a classifier and a
property assignor. The imager is configured to capture mul-
tiple sets of image data which represents a volume in a patient
and is spatially aligned with each other, where each set of
image data is acquired in a different manner so as to create
contrast amongst tissue types contained in the volume. The
classifier is configured to receive the multiple sets of image
data from the magnetic resonance imager and operates to
classify tissue in each voxel in the volume into different tissue
types using a classification algorithm. The property assigner
is configured to receive a probability distribution of tissue
types for the volume and operates to assign a property to
voxels comprising the volume according to the probability
distribution, thereby generating a patient model for the vol-
ume.

This section provides a general summary of the disclosure,
and is nota comprehensive disclosure of'its full scope orall of
its features. Further areas of applicability will become appar-
ent from the description provided herein. The description and
specific examples in this summary are intended for purposes
of illustration only and are not intended to limit the scope of
the present disclosure.

DRAWINGS

FIG. 1 is a diagram of a system for generating patient
models for use in radiation therapy;

FIGS. 2A-2F are six exemplary images of a brain acquired
in different manners so as to create contrast amongst tissue
types;

FIG. 3 is a flowchart depicting an exemplary method for
generating patient models for use in radiation therapy;

FIGS. 4A and 4B are images of the brain having identified
seed regions;

FIG. 5 is a chart showing nominal intensity values for each
extracted class within each of the six sets of image data

FIGS. 6 A-6D illustrate probability maps for each extracted
classes of fluid, fat, solid tissue and bone, respectively; and

FIGS. 7A and 7B illustrates an exemplary relative electron
density image and a digitally reconstructed radiograph gen-
erated by projecting through the entire derived image volume,
respectively.

The drawings described herein are for illustrative purposes
only of selected embodiments and not all possible implemen-
tations, and are not intended to limit the scope of the present
disclosure.

DETAILED DESCRIPTION

FIG. 1 depicts a system 10 for generating patient models
for use in radiation therapy. The system 10 is comprised
generally of an imager 12 and a data analyzer 14. In an
exemplary embodiment, the imager is further defined as a
magnetic resonance imaging device although the techniques
set forth below may be extended to image data captured by
other types of imaging devices, such as positron emission
tomography, single photon emission computed tomography,
or x-ray computed tomography. The data analyzer 14 may be
implemented by any type of computing device having one or
more computer processors. The system may further include a
secondary computing device 19 having a display to view the
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generated patient models. In some embodiments, the data
analyzer 14 may be integrated with the secondary computing
device 19.

The imager 12 is configured to capture multiple sets of
image data representing a volume, for example, the brain of
the patient. Each set of image data is spatially aligned with
each other; that is, defined in a common coordinate system.
Each set of image data is also acquired in a different manner
$0 as to create contrast amongst tissue types contained in the
volume. For example, a first set of image data is acquired in a
first manner that discriminates bone from other tissue types; a
second set of image data is acquired in a second manner that
discriminates solid tissue from other tissue types; and a third
set of image data is a acquired in a third manner that quantifies
water and fat tissue in the volume. Different techniques for
creating contrast amongst tissue types are readily known, for
example, by varying the pulse sequence and/or acquisition
parameters (e.g., echo times, flip angles, retention times, etc.)
of'the magnetic resonance imaging between the different sets
of image data.

In an exemplary embodiment, six different sets of image
data (image volumes) were acquired using four pulse
sequences for the volume of interest as shown in FIGS.
2A-2F. In FIG. 2A, the image volume was acquired using a
T1-weighted volumetric gradient echo (GRE) scan sequence.
In FIG. 2B, the image volume was acquired using a T2
weighted high resolution set of spin echo (SE) scan
sequences. The T1 and T2 weighted images provide differen-
tial contrast between solid tissues, providing significant ana-
tomic contrast, and help further support segmentation of the
tissue classes necessary for supporting dose calculation.

FIGS. 2C and 2D depict additional image volumes
acquired using an ultrashort-TE (UTE) imaging sequence,
composed of two gradient echo acquisitions with echo times
(TEs) of 0.8 and 3.7 ms, respectively. Both UTE source
images enhance signals from tissues with shorter T2, and the
differential contrast between the 800 ms and 3.7 ms TE acqui-
sitions helps separate bone from other signal sources that
would otherwise be more challenging to extract from either
image independently. The shorter TE (0.8 ms in this instance)
enhances the contrast between bone and internal air.

FIGS. 2E and 2F depict a fat calculated image and a water
calculated image, respectively. These two image volumes
were acquired, for example, using a 2-point Dixon method.
The calculated fat images have been reported to estimate
relative fat signal with high accuracy and the water images
can aid in identifying regions with significant free fluid con-
tent. Thus, six exemplary image sequences were specifically
chosen due to their ability to generate different contrasts
among different tissue types in order to partially discriminate
tissues with different relative electron densities, as well as to
aid in delineating tumors and normal tissues during treatment
planning. Other types of image sequences and imaging tech-
niques that discriminate tissue types also fall within the scope
of this disclosure.

With continued reference to FIG. 1, the data analyzer 14
generates patient models from the multiple sets of image data
captured by the imager 12. More specifically, a classifier 15 is
configured to receive the multiple sets of image data 13 from
the imager 12 and operates to classify tissue in the volume of
interest into different tissue types using a classification algo-
rithm. A property assigner 16 is configured to receive a prob-
ability distribution oftissue types yielded by the classification
algorithm and operate to assign one or more properties to
voxels comprising the volume according to the probability
distribution. Each of these operations will be described in
more detail below. By assigning different properties to the
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voxels in the volume, the property assignor 16 generates
different patient models 18 that may be used, for example to
support treatment planning for radiation therapy.

FIG. 3 further illustrates the method implemented by the
data analyzer 14. Multiple sets of image data representing a
volume of a patient are received at 32 by the classifier 15. As
noted above, each set of image data is spatially aligned with
each other and is acquired in a different manner so as to create
contrast amongst tissue types of the patient.

Tissue captured in the image data is then classified at 34
into different tissue types using a classification algorithm.
Thus, the multiple sets of image data serve as input to the
classification algorithm. Each class represents a type of tissue
selected, for example, from the group consisting of bone, fat,
fluid and solid tissue. Other types of tissues also fall within the
scope of this disclosure. Likewise, various types of classifi-
cation or clustering algorithms, such as logistic regression,
may be used to classify the tissue types. For radiation therapy,
tissues presenting different radiation transport properties
need to be separated. These would include (in order of
decreasing attenuation) bone, solid tissue, water, fat, and air.
Representing these tissue types may further aid in contouring
tumors and normal tissues, by allowing the physician or
dosimetrist to selectively visualize images with these indi-
vidual components enhanced or removed.

In an exemplary embodiment, the classification algorithm
is based on a fuzzy c-mean (FCM) clustering algorithm.
Spatial constraints are employed in the FCM clustering
method to improve robustness of the classification under the
influence of noise and intensity inhomogeneity in images.
The modified objective function is used to classify a dataset
1%}, = R¥into ¢ prototype classes by

I = Wil —vill® + @

c N c
=1 i=1

N
= 2
> il - vil

i=l & k=1

where u,, represents the membership of the kth data point (x;)
to the ith prototype class (v,), me[1, o) is a weighting expo-
nent on each fuzzy membership, X, is a mean or median of the
neighbors within a specified kernel around x,, and a is a
weighting factor. The results are ¢ N-dimensional prototype
vectors to identify the nominal intensity across the N input
images for each of the ¢ different tissue classes, and ¢ prob-
ability maps for each voxel belonging to a given class. Assign-
ing properties (e.g., relative electron density, elasticity, etc.)
to these classes or their probabilistic combinations yields
images representative of one or more patient image models of
interest as further described below. Correlating classified tis-
sues with derived physiological measured (e.g. diffusion, per-
fusion) from MRI scans taken in the same session can also aid
in longitudinal analysis of disease and the impact of therapy
on tumors and normal tissues.

To initiate the classifier, regions in the image data indica-
tive of a particular tissue type are identified and provided as a
seed input to the classification algorithm. Seed regions were
identified from the input images in anatomic regions typical
of: a) bone (skull), b) fatty tissue (identified from fat image),
c) free fluid (eyes, ventricles), and d) solid tissue (grey/white
matter) as shown in FIGS. 4A and 4B. A bone region is noted
at 42; whereas, a fat region is noted at 43. The bone and fat
regions were generated by thresholding on the short TE UTE
and calculated fat images, respectively. The fluid regions
were selected from inside the eyes (>95% water content in the
aqueous humor) as indicated at 44, and the solid tissue region
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was drawn within the brain as indicated at 45. While these
regions were placed using a combination of manual and auto-
mated threshholding methods, existing atlas methods can also
be applied to automatically seed approximate regions.
Although larger regions are shown in this example in order to
average heterogeneous signals of signal types intended to be
included within a specific class, aregion could also be a single
voxel to initiate the prototype vectors, in which case that
specific voxel location across all image volumes would
exactly define the initiating prototype vector for the given
class. Of note, fat exists to varying degrees within a subset of
the voxels containing bone. One intended objective of this
algorithm is to properly characterize the relative concentra-
tions of various fat/bone mixed signals within voxels.

Once complete, FCM analysis yields a final set of proto-
type vectors. FIG. 5 is a chart depicting nominal (voxel)
intensity values for each extracted class within each of the six
sets of image data. Additionally, the FCM analysis yields a
probability map for each extracted class. With reference to
FIGS. 6A-6D, the probability maps of class membership
define the likelihood or percentage of a given class member-
ship in a given voxel. In this example, the FCM algorithm was
not applied to classity air. In addition to classification, simple
intensity thresholding methods across the input images can
also identify regions of air within the external patient surface.

The above method describes an instance in which the clas-
sification is optimized for each individual scan session. If the
MRI intensity values are consistent across patients and imag-
ing sessions, then a constant set of values can be applied to
classification, thus reducing the computational effort for indi-
vidual patients. Similarly, if normalization can minimize the
variation across patient scans, the fitting component for indi-
vidual patients can be reduced and/or removed.

With continued reference to FIG. 3, properties are assigned
at 36 to each voxel in the volume based on the classification of
tissue by the classification algorithm. More specifically, prop-
erties are assigned according to the probability distribution of
tissue types yielded by the classification algorithm. In an
exemplary embodiment, the probabilities from each class are
combined by weighting the probability with an assigned
Hounsfield unit, thereby resulting in an estimate of a repre-
sentative composite CT image.

Assigning different properties to voxels in the volume gen-
erates different types of patient models which may be used in
radiation therapy. For example, relative electron density maps
may be generated using the classification of tissue type. For
MYV photon dose calculation, bulk relative electron densities
of typical intracranial tissue can be approximated as: bone:
1.51; fat: 0.95; solid tissue (e.g. white matter, grey matter):
1.04 and free fluid (e.g. CSF, 99% of vitreous humor): 1.00.
Using the class membership probability maps, an exemplary
algorithm has been selected to assign an electron density
value to a given voxel. The four probability maps (fluid, fat,
solid tissue, bone) give the probability distributions (pw, pf,
pt, pb) for membership in each of the classes, respectively.
The relative electron density (RED) formula is given as fol-
lows:

RED=1.0*pw+0.95*pf+1.04*pt+1.51*pb (equation 1)

In this way, an electron density value is assigned to a given
voxel according to the probability distribution associated
with the given voxel, and can account for the mixing of
multiple tissue type within that voxel. FIGS. 6A and 6B
illustrates an example enhanced axial image, in which the
relative electron density assignments from the classified tis-
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sues have been applied, and a digitally reconstructed radio-
graph generated by projection through the RED-assigned
image volume, respectively.

Depending on the robustness of the classifications, addi-
tional statistical methods may be used to enhance the prob-
ability assignments. For example, if a series of investigations
determines the precision of probability assignment to be x %,
then all voxels with probability less than x % can be excluded
from classification (reassigned to zero probability), and all
voxels within 100%-x may be potentially labeled as purely
consisting of the specified class (i.e., assignment of all other
memberships to 0%). In another example, the fat image from
the Dixon acquisition can be used to quantitate the distribu-
tion of cf, the fractional fat concentration present in a given
voxel. This value can be used to modity the formula in equa-
tion 1 to substitute pf for cf for voxels in which pf exceeds the
threshold that distinguishes the presence of fat from the
uncertainty in characterization.

Applying biomechanical properties (e.g. Poisson ratio,
Young’s modulus, etc.) to tissue classes is another type of
property assignment. By establishing the principal tissue
components within each voxel, known elemental tissue prop-
erties can be assigned, and thus a finite element model can be
assembled that reflects the local tissue behavior under forces
such as muscle contractions as well as forces such as tumor
growth/reduction and edema. In an exemplary embodiment, a
predominant tissue type may be determined for each voxel
from the probability distribution yielded by the classification
algorithm. Depending upon the predominant tissue type, a
value for the biomechanical property is then assigned to each
voxel, thereby generating another type of patient model.
These types of models can be used as an aid in defining the
extent to which tissue types may change shape or relative
position over the course of treatment. They may aid in relating
patient images at different times during the course of treat-
ment and subsequent to therapy (e.g. for post-treatment
assessment). They can also be used to simulate the behavior
of imaging and focused therapeutic systems (e.g. focused
ultrasound).

Another example of property assignment relates to attenu-
ation correction for PET-MRI. In this example, attenuation
properties are assigned to each voxel using the probability
distribution yielded by the classification algorithm, thereby
generating yet another type of patient model. The ability to
define local attenuation properties supports direct attenuation
mapping from MRI, which is needed to more accurately
correct the PET signals for the attenuation of the positron-
decay photons passing through different amounts of attenu-
ating tissue before detection. In this example, the same
attenuation principles applied to external beamradiation
treatment planning are used with attenuation properties spe-
cifically selected for the energy of the photons (511 KeV).

In another aspect of this disclosure, the newly generated
patient models may be interactively visualized, for example
on a display of the secondary computing device 19. A physi-
cian may wish to reduce the influence of the skull temporarily
while attempting to draw a tumor near the skull edge. He/she
may wish to see the amount of fluid turned on or off interac-
tively while attempting to separate tumors from edema. The
interactive weighting of tissue types or fundamental compo-
nents of tissue while drawing normal tissues or selecting
anatomic regions of normal tissue for injury assessment is of
value. By having tissue types identified, a user display can be
applied in which the relative contributions of each signal type
can be interactively adjusted, and other visualizations (e.g.
colorwash of fat over a T1 weighted image) can be applied as
well. Given the patient models as input, it is understood that
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the secondary computing device can be configured to achieve
the visualization techniques set forth above.

The techniques described herein may be implemented by
one or more computer programs executed by one or more
processors. The computer programs include processor-ex-
ecutable instructions that are stored on a non-transitory tan-
gible computer readable medium. The computer programs
may also include stored data. Non-limiting examples of the
non-transitory tangible computer readable medium are non-
volatile memory, magnetic storage, and optical storage.

Some portions of the above description present the tech-
niques described herein in terms of algorithms and symbolic
representations of operations on information. These algorith-
mic descriptions and representations are the means used by
those skilled in the data processing arts to most effectively
convey the substance of their work to others skilled in the art.
These operations, while described functionally or logically,
are understood to be implemented by computer programs.
Furthermore, it has also proven convenient at times to refer to
these arrangements of operations as modules or by functional
names, without loss of generality.

Unless specifically stated otherwise as apparent from the
above discussion, it is appreciated that throughout the
description, discussions utilizing terms such as “processing”
or “computing” or “calculating” or “determining” or “dis-
playing” or the like, refer to the action and processes of a
computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system memories
orregisters or other such information storage, transmission or
display devices.

Certain aspects of the described techniques include process
steps and instructions described herein in the form of an
algorithm. It should be noted that the described process steps
and instructions could be embodied in software, firmware or
hardware, and when embodied in software, could be down-
loaded to reside on and be operated from different platforms
used by real time network operating systems.

The present disclosure also relates to an apparatus for
performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general-purpose computer selectively activated or
reconfigured by a computer program stored on a computer
readable medium that can be accessed by the computer. Such
a computer program may be stored in a tangible computer
readable storage medium, such as, but is not limited to, any
type of disk including floppy disks, optical disks, CD-ROMs,
magnetic-optical disks, read-only memories (ROMs), ran-
dom access memories (RAMs), EPROMs, EEPROMs, mag-
netic or optical cards, application specific integrated circuits
(ASICs), or any type of media suitable for storing electronic
instructions, and each coupled to a computer system bus.
Furthermore, the computers referred to in the specification
may include a single processor or may be architectures
employing multiple processor designs for increased comput-
ing capability.

The algorithms and operations presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general-purpose systems may also be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatuses
to perform the required method steps. The required structure
for a variety of these systems will be apparent to those of skill
in the art, along with equivalent variations. In addition, the
present disclosure is not described with reference to any
particular programming language. It is appreciated that a
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variety of programming languages may be used to implement
the teachings of the present disclosure as described herein.

The present disclosure is well suited to a wide variety of
computer network systems over numerous topologies. Within
this field, the configuration and management of large net-
works comprise storage devices and computers that are com-
municatively coupled to dissimilar computers and storage
devices over a network, such as the Internet.

The foregoing description of the embodiments has been
provided for purposes of illustration and description. It is not
intended to be exhaustive or to limit the disclosure. Individual
elements or features of a particular embodiment are generally
not limited to that particular embodiment, but, where appli-
cable, are interchangeable and can be used in a selected
embodiment, even if not specifically shown or described. The
same may also be varied in many ways. Such variations are
not to be regarded as a departure from the disclosure, and all
such modifications are intended to be included within the
scope of the disclosure.

What is claimed is:
1. A computer-implemented method for generating patient
models for use in radiation therapy, comprising:
receiving, by a computing device having a processor, mul-
tiple sets of image data representing a volume of a
patient, each set of image data is spatially aligned with
each other and is acquired in a different manner so as to
create contrast amongst tissue types of the patient;

classifying, by the computing device, tissue in each voxel
in the volume into different classes using a classification
algorithm, where the multiple sets of image data serve as
input to the classification algorithm, and each class rep-
resents a type of tissue, and classifying tissue yields a
probability distribution for membership in each class;

assigning, by the computing device, a value of a property to
each voxel in the volume, where the value for a given
voxel is derived from probability distributions that cor-
respond to the voxel and is computed as a weighted sum
of probability distributions from each class associated
with the given voxel and the property differs from tissue
type; and

generating a patient model for the volume from the prop-

erties assigned to each voxel.

2. The computer-implemented method of claim 1 further
comprises acquiring the multiple sets of image data by at least
one of varying a pulse sequence or acquisition parameters of
magnetic resonance imaging between each set of image data
in the multiple sets of image data.

3. The computer-implemented method of claim 1 further
comprises

acquiring a first set of image data in a first manner that

discriminates bone from other tissue types;

acquiring a second set of image data in a second manner

that discriminates soft tissue from other tissue types; and
acquiring a third set of image data in a third manner that
quantifies water and fat tissue in the volume.

4. The computer-implemented method of claim 1 further
comprises identifying a region in the image data indicative of
aparticular tissue type and inputting the region as an input to
the classification algorithm.

5. The computer-implemented method of claim 1 wherein
classifying tissue type further comprises using a fuzzy
c-mean clustering algorithm as the classification algorithm.

6. The computer-implemented method of claim 1 wherein
assigning properties further comprises assigning an electron
density value to a given voxel according to the probability
distribution associated with the given voxel.
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7. The computer-implemented method of claim 1 wherein
assigning properties further comprises assigning at least one
of a Poisson ratio and a Young’s modulus value to a given
voxel according to the probability distribution associated
with the given voxel.
8. The computer-implemented method of claim 1 wherein
assigning properties further comprises assigning an attenua-
tion value to a given voxel according to the probability dis-
tribution associated with the given voxel, the attenuation
value indicative of positron decay from positron emission
tomography.
9. A computer-implemented method for generating patient
models for use in radiation therapy, comprising:
acquiring, by a magnetic resonance imager, multiple sets of
image data by varying at least one of a pulse sequence or
acquisition parameters of magnetic resonance imaging
between each set of image data in the multiple sets of
image data, where each set of image data represents a
volume of a patient and is spatially aligned with each
other;
classifying, by a computing device having a processor,
tissue in the multiple sets of image data into different
tissue types using a classification algorithm, where the
multiple sets of image data serve as input to the classi-
fication algorithm and each class represents a type of
tissue selected from the group consisting of bone, fat,
fluid and solid tissue;
assigning, by the computing device, a first type of property
to voxels comprising the volume based on a probability
distribution of tissue types yielded by the classification
algorithm, where the value for the first property type
assigned to a given voxel is a mathematical combination
of the probability distribution for each tissue type; and

assigning, by the computing device, a second type of prop-
erty to the voxels based on the probability distribution of
tissue types, the second type of property being difterent
from the first type of property and the value for the
second property type assigned to a given voxel is a
mathematical combination of the probability distribu-
tion for each tissue type.

10. The computer-implemented method of claim 9 wherein
acquiring the multiple sets of image data further comprises

acquiring a first set of image data in a first manner that

discriminates bone from other tissue types;

acquiring a second set of image data in a second manner

that discriminates solid tissue from other tissue types;
and

acquiring a third set of image data in a third manner that

quantifies water and fat tissue in the volume.

11. The computer-implemented method of claim 10 further
comprises acquiring the first set of image data using gradient
echo imaging sequences.
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12. The computer-implemented method of claim 10 further
comprises acquiring the second set of image data using spin
echo imaging sequences.

13. The computer-implemented method of claim 9 wherein
classifying tissue type further comprises using a fuzzy
c-mean clustering algorithm as the classification algorithm.

14. The computer-implemented method of claim 13
wherein assigning properties further comprises assigning a
given tissue type to a given voxel when a probability assign-
ment for the given tissue type exceeds a confidence threshold.

15. The computer-implemented method of claim 13
wherein assigning properties further comprises assigning an
electron density value to a given voxel according to the prob-
ability distribution associated with the given voxel.

16. The computer-implemented method of claim 13
wherein assigning properties further comprises assigning at
least one of a Poisson ratio and a Young’s modulus value to a
given voxel according to the probability distribution associ-
ated with the given voxel.

17. The computer-implemented method of claim 13
wherein assigning properties further comprises assigning an
attenuation value to a given voxel according to the probability
distribution associated with the given voxel, the attenuation
value indicative of positron decay from positron emission
tomography.

18. A computer-implemented system for patient models for
use in radiation therapy, comprising

a magnetic resonance imager configured to capture mul-
tiple sets of image data represents a volume in a patient
and is spatially aligned with each other, where each set
of image data is acquired in a different manner so as to
create contrast amongst tissue types contained in the
volume;

a classifier configured to receive the multiple sets of image
data from the magnetic resonance imager and operable
to classify tissue in each voxel in the volume into differ-
ent tissue types using a classification algorithm, such
that each class represents a type of tissue and classifying
yields a probability distribution for membership in each
class; and

a property assigner configured to receive a probability dis-
tribution of tissue types for the volume and operable to
assign a property to voxels comprising the volume
according to the probability distribution, where the
value for a given voxel is derived from probability dis-
tributions that coorespond to the voxel and is computed
as a weighted sum of probability distributions from each
class associated with the given voxel and the property
differs from tissue type; and generating a patient model
for the volume from the properties assigned to each
voxel.



